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Figure 1: We present a control policy that can open and pass through both pull (top) and push
(bottom) doors by estimating the door properties during deployment.

Abstract: Using doors is a longstanding challenge in robotics and is of significant
practical interest in giving robots greater access to human-centric spaces. The task
is challenging due to the need for online adaptation to varying door properties and
precise control in manipulating the door panel and navigating through the confined
doorway. To address this, we propose a learning-based controller for a legged
manipulator to open and traverse through doors. The controller is trained using
a teacher-student approach in simulation to learn robust task behaviors as well as
estimate crucial door properties during the interaction. Unlike previous works,
our approach is a single control policy that can handle both push and pull doors
through learned behaviour which infers the opening direction during deployment
without prior knowledge. The policy was deployed on the ANYmal legged robot
with an arm and achieved a success rate of 95.0% in repeated trials conducted in
an experimental setting. Additional experiments validate the policy’s effectiveness
and robustness to various doors and disturbances. A video overview of the method
and experiments can be found at youtu.be/tQDZXN_k5NU.
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1 Introduction

Legged manipulator robots offer significant potential in combining the ability of legged robots to
navigate varied environments with the potential for rich interactions afforded by the manipulator.
An essential skill for these robots is the autonomous opening and traversal of doors, significantly
expanding their reach in human-centered environments. While door opening seems a quotidian task,
it poses a challenge for control, especially for a high degree-of-freedom system such as a legged
manipulator. Moreover, doors can vary in ways that are not immediately observable, such as in their
spring stiffness and whether they are push or pull. The task becomes more difficult when the robot
must also pass through the door as it must make additional decisions such as when to disengage
from the handle or if it needs to hold the door open against the door’s self-closing mechanism.
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Existing methods for robot door opening have largely only considered being robust to properties that
vary continuously such as the mass, spring resistance, or friction [1, 2, 3]. However, for determining
the crucial property of the door opening direction, existing methods have relied on some hardcoded
prior by either having a user provide the opening direction [4] or using pre-programmed routines [5].
These approaches limit the autonomy and adaptability of the robot in unknown environments. Ide-
ally, the controller is "plug-and-play," meaning it does not rely on any priors and opens the door
given only measurements of the door location by inferring the opening direction during the task,
similar to how a person would open a door they have not encountered before. In moving towards
this ideal, this paper proposes a learning-based legged manipulator control policy trained using the
popular teacher-student approach [6] that can open and traverse through doors of varying properties
via estimating these properties during deployment.

Reinforcement Learning (RL) with domain randomization is used to train the teacher policy as
approaches such as imitation learning or model-based control are difficult to scale to doors of varying
properties. The student policy is then trained to imitate the teacher and estimate the door properties
using only the information available during deployment. To the best of our knowledge, our approach
is the first monolithic control policy that can handle both push and pull doors without being given this
information a priori or relying on any hardcoded routines to determine the door opening direction.

Our main contributions are summarized as:
• A control policy that can open and traverse through doors of varying characteristics (e.g. opening

direction, dimensions, dynamical properties), given only the robot proprioception and the loca-
tions of the handle and doorway.

• Real-world hardware experiments validating the policy’s efficacy on different doors.

• Analysis of the policy’s ability to estimate the door properties from the task interaction.

2 Related Work

2.1 Model-Based Door Opening

Several works studied door opening for a manipulator on a wheeled base by tracking predefined
reference velocities and forces [7, 8, 9, 10]. For legged manipulators, Model Predictive Control
(MPC) has been applied for door opening [11, 2, 12]. MPC controllers rely on tracking a reference
trajectory, which necessitates using a planner and requires knowing the properties of the door such as
its opening direction and precise dimensions. As such, the practical applicability of such controllers
to unseen doors is limited. The commercially available Spot robot with the arm manipulator includes
a door opening controller. While its details are not public, it is likely a model-based controller.
According to available documentation [4], Spot’s controller must be provided information a priori
such as the door’s opening and swing directions.

2.2 Learning-Based Door Opening Control

RL is a natural approach for door opening as specifying the desired behavior through rewards for
opening doors is intuitive. Several works used door opening as a benchmark task for RL algo-
rithms [13, 14, 15]. Urakami et al. [1] developed the DoorGym simulation environment for RL
door opening with a specific focus on robustness and generalization via domain randomization and
demonstrated their trained policies in hardware experiments on a fixed-based manipulator. Schwarke
et al. [3] trained and deployed an RL door opening policy on a wheeled-legged robot. However, these
works produce control policies that can only handle a single opening direction as they treat push and
pull doors as separate RL tasks. The works above have focused on opening the door and ignor-
ing the subsequent task of passing through. Ito et al. [16] demonstrated a learning-based approach
for opening and passing through doors with a wheeled base mobile manipulator. Their approach
combines separate control modules for handling opening and passing through. However, the robot
learns its motions from human demonstrations via teleoperation which is difficult to scale to differ-
ent doors. Moreover, the method requires two separate modules for handling push and pull doors.
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Figure 2: Overview of the training method. Dashed lines indicate the flow of gradients from the
losses. The teacher policy is first trained using RL operating on a privileged set of observations.
The student policy operates only on the observations available during deployment and is trained to
imitate the teacher’s behavior while also estimating the privileged information.

More recently, Kang et al. [5] combined RL and position-force controllers to open and pass through
both push and pull doors with a wheeled base mobile manipulator. However, the RL controller is
only used for push doors as the authors could not train a single RL policy to handle both opening
directions. The method also relies on a hardcoded push-pull procedure after turning the handle to
determine the door’s opening direction.

2.3 Teacher-Student Distillation

Recent successes in applying teacher-student training to legged robot locomotion [17, 18] have
demonstrated remarkable robustness and the student policy’s ability to estimate properties of the
environment. For example, in the locomotion task, the student policy can infer the height of the
local terrain, even in the presence of corrupted exteroceptive sensor measurements by leveraging the
knowledge of the feet’s position. For door opening, the information necessary to complete the task
can only be acquired through direct interaction with the door (e.g. push or pull). Given this, the
teacher-student approach could be particularly beneficial for this task.

3 Method

Figure 3: Overview of the training environ-
ment in simulation. A hook end-effector is
used for grasping the door handle.

An overview of our method is shown in Fig. 2. Both
teacher and student policies are trained in a simulation
environment in Isaac Gym [19] as shown in Fig. 3. The
robot modeled in simulation and used in real-world ex-
periments is ANYmal with an arm manipulator [20].

3.0.1 Door Model

We focus on hinged doors that consist of a single door
panel with a handle for unlocking the door. The door
has two degrees of freedom corresponding to the hinge
and handle angles θ and ϕ respectively. To manipu-
late the handle, the robot is equipped with a hook end-
effector. The handle must be turned to unlatch and open the door. Pretensioned spring resistances
that act against opening the door and turning the handle are modeled as constant torques. The effect
of a door closer system installed to regulate the speed of door closure was modeled as a damp-
ing torque on the door hinge that scales linearly with the hinge velocity. We included additional
damping that scales quadratically with the hinge velocity to account for air resistance. The training
environment contains four door types from the set {pull, push} × {right, left}. Where right and left
denote whether the hinge is on the right or left side of the door panel.
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3.0.2 Policy Actions

The policy directly controls the robot’s arms and commands a lower-level locomotion policy that
governs the legs. We use the learned locomotion policy from Ma et al. [21] which takes as input the
planar linear velocities vx and vy , angular velocity about z in the robot base frame, and the applied
wrench on the robot base from the arm and its motion. Instead of estimating the applied wrench, we
found it sufficient and simpler to set it to a fixed mean value. To prevent the policy from moving
the base too fast, we clip the linear and angular velocity commands to the locomotion controller to
maximum magnitudes of 0.5 m/s and 1 rads/s respectively. Conversely, commands below 0.1 m/s
and 0.1 rads/s are set to zero. The policy controls the arm by setting joint angle targets for the arm’s
joint-level PD controllers. The commanded target angle for joint i is computed as

clip(sai + q̃i, qi − στ̄i/Kp, qi + στ̄i/Kp) , (1)

where ai is the action, q̃i is default position, and qi is the joint position for joint i. Finally, s is an
action scaling factor. For safety, the commanded target for joint i is clipped based on a proxy for
the actuator torque threshold computed from the joint’s proportional gain Kp, torque limit τ̄i, and
a saturation parameter σ. We set σ to 0.7 for all arm joints. This action clipping is applied during
training and on the real robot.

3.0.3 Sim-to-Real Considerations

The following were implemented in the simulation training environment to facilitate policy transfer
onto the real robot. Detailed domain randomization parameters are reported in the Appendix.

Randomize Initial Robot Configuration: The robot base starts an episode in a random location and
yaw angle in front of the door with a random initial base velocity. The initial arm configuration is
not randomized to avoid self-colliding configurations.

Randomize Arm Joint PD Gains: The PD gains for each arm joint are resampled for each episode.

Randomize Door Dimensions: We generate door models while randomizing the handle locations on
the door panel, the doorway width, and the door panel thickness.

Randomize Door Dynamics Properties: Resistance torques and the damping coefficients at the han-
dle and hinge, the door mass, and the maximum handle turning angle are resampled for each episode.

Zero Handle Contact Friction: Many door handles have slippery surfaces which are especially hard
to turn with a hook end-effector. We address this by zeroing the friction coefficient of the handle and
hook end-effector contact in simulation. With non-zero handle contact friction, the policy tended to
learn more aggressive behaviours that relied on the end-effector momentum to turn the handle.

3.1 Teacher Training

The teacher is trained as an Actor-Critic using Proximal Policy Optimization [22]. We separate the
task into two stages. The first is to approach and open the door and the second is to pass through the
door. This is done as the rewards are simpler to define when considering each stage in isolation.

3.1.1 Observations

The teacher observation includes measurements that are available to the robot during deployment
along with privileged information only accessible in simulation. No noise is introduced to the teacher
observation. The measurements available during deployment are the robot’s proprioception and ex-
teroceptive measurements of the location of the doorway and handle relative to the robot. Propri-
oception includes the base orientation, base linear and angular velocities, arm joint positions and
velocities, and the previous step actions. The privileged observations include the door joint (hinge
and handle) positions and velocities, the mass of the door panel, the applied torques at the door hinge
and handle due to spring stiffness and damping, the door type, and a task stage observation denoting
if the policy is currently in the stage of opening or passing through the door.
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3.1.2 Rewards

Figure 4: Additional rewards are used for
pull doors to encourage the robot to move
around the door panel. When the robot
base is in Z1 it will receive reward rZ1

and in Z2 it will receive reward rZ1
+ rZ2

.
These rewards are also given based on the
end-effector location.

The opening and passing stage rewards are denoted by
ro and rp respectively. ro is further decomposed into
rewards for handle manipulation, rhm, and a reward
for opening the door to a target angle, rod. rhm com-
prises reward terms for moving the end-effector to the
handle, grasping the handle, and turning the handle.
The policy does not need to interact with the handle
once the door has been unlocked and opened enough.
As such, we set rhm to its maximum value such that
the policy ignores it once the door is opened enough.
We considered the door opened enough at 30°.

The opening stage transitions to the passing stage
when the door has been opened more than 70°. After
transitioning to the passing stage, the policy receives
the maximum possible value of ro in addition to rp.
This is done so the policy can pursue rp without trad-
ing off ro as otherwise the policy can refuse to transition.

The passing stage reward rp is given by the dot product of the base velocity vB with the unit progress
vector p. Before the robot has passed through the doorway, p is the vector from the base to the
doorway center. After the robot has passed through, p is the vector along the direction of the
doorway. This dot product is normalized by the maximum commandable velocity of the locomotion
controller ∥vB∥max. rp is clipped to a maximum of 1, otherwise, the policy can learn undesired
behaviors such as throwing its arm to move the base faster than ∥vB∥max.

For pull doors, rp alone is insufficient for the policy to learn to move around the open door panel.
Therefore, once a pull door is opened enough in the opening stage, we reward it for moving its base
and end-effector around the door panel as shown in Fig. 4. We also require the base and end-effector
to be behind the door panel to transition to the passing stage for pull doors.

Shaping rewards rs are used to regularize the behavior such that the policy respects the hardware
limitations of the robot and is safe to deploy. rs is applied during both the open and passing stages
and comprises terms such as avoiding collisions, minimizing arm motions, penalizing unwanted
base motions, penalizing out-of-limit commands, and penalizing singular arm configurations.

Detailed definitions and scales of all reward terms are given in the Appendix.

3.2 Student Training

The student policy is trained to imitate the teacher policy’s actions given only the proprioceptive and
exteroceptive door observations that are available during deployment. Gaussian noise is added to all
of the student’s observations. The student policy also receives supervision through estimating the
privileged information of the door and handle locations relative to the robot, the door joint states,
the door mass, the door hinge and handle torques, and the door type. The Smooth L1 Loss is used
for losses except for the door type where the Cross Entropy Loss is used.

The student policy is based on a recurrent neural network (RNN) with an architecture that follows
the student policy for legged locomotion from Miki et al. [18] with some differences. Specifically,
the attention-gate decoder in the original architecture is replaced with a linear layer as the decoder.
This was done as unlike locomotion where it is possible to do blind, we assume that the exteroceptive
measurements during door opening can be noisy but not degraded to the point of being useless.

We do not include all available measurements in the student policy observation similar to Tan et al.
[23]. Specifically, the previous actions and arm joint velocities are omitted. Training the student
policy with much higher noise on the arm joint velocity resulted in better transfer of the policy to
the real robot. Given this, we completely removed the arm joint velocity from the observation.
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Figure 5: Real-world experiments of the policy deployed on the real robot, traversing through doors
of varying swing (left/right) and opening (push/pull) directions. The policy’s estimated probability
for each door type over time is plotted below the corresponding experiment. The true door type is
plotted as a solid line while others are plotted as dashed lines.
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Figure 6: Correlation of the policy’s estimated
door type and its actions. At 2.7 seconds, the
policy shifts its belief from pull to push and ac-
cordingly commands the base forwards to push.
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Figure 7: UMAP projection of the policy’s hid-
den state over trajectories collected in simula-
tion with pull right and push right doors. All
hidden state trajectories start at the central clus-
ter and progress in separate directions depend-
ing on whether the door is push or pull.

4 Results

The student policy is deployed directly onto the robot without further fine-tuning. The policy is
both trained and deployed at 50Hz. We tasked the robot with opening and traversing through doors
varying in their opening and swing directions, doorway and handle dimensions, door panel inertia,
handle dynamics, and the presence of a door self-closing mechanism.

Proprioceptive observations are provided by sensors onboard the robot, such as encoders measuring
the joint states. The robot also runs onboard lidar odometry [24] to estimate its base pose. For
exteroception, the policy only needs to know the handle and doorway locations relative to the robot
base. We provide these door measurements using either motion capture or AprilTags [25] as an
external tracking system. The motion capture system provides accurate measurements but requires
several fixed tracking cameras where as the AprilTags can be easily deployed on any door by tracking
a tag on the door panel with an external camera. As the door measurements are relative to the robot,
they could also be obtained using onboard sensing, but we leave this as future work.
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Figure 8: Comparing imitation loss when
training the student policy with and without
the door type estimation loss.
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Figure 9: Comparing imitation loss when
training student policy with and without a re-
current module.

4.1 A Single Control Policy for All Door Types

We evaluate whether the policy can recognize the door type (opening and swing directions) during
the task and open them without being given this information beforehand. Indeed our policy could
successfully deduce the correct type and pass through for all door types as shown in Fig. 5. When the
policy was uncertain of the opening direction, it shifted its estimate between push and pull. This shift
of the policy’s belief was correlated to its commanded actions as shown in Fig. 6, where the policy
learned to push and pull until it could move the door panel. We also study how the policy’s belief
of the door type is represented in its RNN hidden state by visualizing the hidden states trajectories
using a UMAP [26] projection in Fig. 7. The figure shows that the policy learned to represent the
opening direction (push/pull) in separate regions of the hidden state space. Moreover, the regions
for the opening directions appear linearly separable in the projection.

4.2 Repeatability of the Control Policy

Repeated trials of the policy were conducted to evaluate its repeatability. A spring-loaded door was
placed within the motion capture space and 20 continuous trials were performed for both the pull and
push sides. The policy successfully traversed the door in 20/20 and 18/20 trials for the pull and push
sides respectively, with an overall success rate of 95.0%. In all trials, the policy was successfully
able to open the door. The two failed trials on the push side were caused by the robot getting stuck
on the side of the doorway which was protruding due to a lack of walls around the door which differs
from the simulation model. A video of the trials is provided in the supplementary material

4.3 Ablations in Simulation

We ablated the student policy training to study if supervision from the estimation task helps in
learning the control task and if the recurrence of the student policy is necessary.

Door Type Estimation Loss: The student policy is trained without supervision from estimating the
door type and we find that the imitation loss alone is sufficient for learning to distinguish between
both push and pull doors. Moreover, removing the estimation loss has little effect on the training
dynamics of the imitation loss as seen in Fig. 8, but its presence neither helps nor hurts the imitation
learning. Given this, the estimation loss and decoder module are still included in our final policy
architecture as they are useful for helping to understand the internal belief state of the policy.

Student Policy Recurrence: We replaced the RNN module of the student policy with an MLP and
trained the policy with the imitation loss to study the effect of removing recurrence. Fig. 9 shows
that the student policy fails to imitate the teacher policy without recurrence. Specifically, the MLP
student policy cannot imitate the teacher given the noisy student observations. As the MLP oper-
ates on a single-step observation, any noise on the observation makes it difficult for the policy to
disambiguate different states of the system and to take the appropriate action.
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(a) Chair blocking the door. (b) Human pushing on the door. (c) Rope pulling on the robot.

Figure 10: Robustness of the policy to external disturbances unmodelled in the training environment.

5 Discussion

5.1 Emergent Robustness to Unmodeled Disturbances

The student policy showed robust recovery from disturbances not explicitly modeled during training
in simulation. For example, the policy could handle pushing or pulling on the door or robot as
seen in Fig. 10, even though random pushes/pulls on the robot were not used during training. It
can be expected that the teacher policy would be robust to such disturbances as it acts on the current
observation without regard to the history. As the student does not perfectly imitate the teacher during
training, mistakes in the student’s actions during training provide opportunities to learn recovery
behaviours from the teacher. For example, if the student’s action missed the handle grasp, the
subsequent teacher’s actions to imitate would be to retry grasping the handle.

5.2 Failure Cases

A common failure case of the policy was not turning the handle enough to unlock the door. When
this failure occurs, the policy becomes stuck moving the robot back and forth trying to push and
pull on the door as it shifts its belief of the door type. The policy does not have a direct observation
which indicates that the handle has been turned. As such, it can learn to incorrectly associate the
robot’s handle turning motion with the handle turning. Using visual or force sensing, which can
directly observe the turning of the handle, could alleviate this issue.

The performance of the policy was notably degraded when using AprilTags to track the door due to
characteristics of the AprilTag measurement noise being unmodeled in simulation when training the
policy. We note a failure case caused by the AprilTag latency where the policy lets go of the handle
and attempts to grasp it again as it receives delayed measurements of the handle location.

Lastly, unmodeled door geometry in simulation causes failure cases such as the hook end-effector
catching on the door panel or the robot base getting stuck on the protruding sides of a doorway as
shown in the videos provided in the supplementary material.

6 Conclusion
This paper presented a learned control policy for a legged manipulator to traverse through doors. The
policy was trained in simulation using a teacher-student approach such that it learned both robust
behaviors and the ability to estimate properties of the door through interaction during the task. The
latter allowed the policy to handle doors of varying properties, such as the opening direction, without
being given this information a priori. The policy was deployed on the ANYmal robot with an arm
and achieved a 95.0% success rate in trials on the push and pull sides of a spring-loaded door.
Additional experiments demonstrated the policy traversing through doors of all opening and swing
directions, various dimensions, and various hinge and handle dynamics, as well as robustness to and
recovery from external disturbances. Future works include using onboard sensing for obtaining the
door measurements, adding force sensing, and handling a larger set of door handles such as knobs.
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Appendix

A Reward Definitions

A.1 Opening Rewards

The opening reward ro is composed of the reward for opening the door to the target angle rod along
with rewards for manipulating the door handle denoted by rhm. For pull doors, we additionally
include a reward for encouraging the robot to move its base and end-effector around the door panel
denoted by radp. These rewards together compose the opening reward

ro = 3rod +

{
rhm θ < 30o

r̄hm + 0.5radp otherwise

When the door has been opened enough, set as θ > 30o, rhm is set to its maximum value r̄hm as it
is no longer necessary for the policy to interact with the handle to open the door further. radp is only
applied once the door has been opened enough.

The handle manipulation reward is composed of the following components

rhm = rehd + rth + reho + 0.5rhg + rplg

All individual reward terms in ro are defined as follows.

• rehd (end-effector to handle): Minimizes the distance between the end-effector point e and the
handle point h:

rehd = exp(−∥e− h∥2)
• rth (turn handle): Rewards increasing the handle turning angle ϕ:

rth = ϕ/ϕmax

where ϕmax is the maximum the handle can be turned.

• reho (end-effector grasp orientation): Rewards the end-effector for tracking a desired orientation
for grasping the handle.

reho = 1− |eo|
π

where eo angular error between the end-effector orientation and the desired end-effector orienta-
tion.

• rhg (handle in end-effector grasp): Give a binary reward when the handle point h is within the
grasp zone G of the end-effector.

rhg =

{
1G(h) ∥e− h∥2 ≤ 1

0 otherwise

1A(x) is the indicator function of value 1 if x ∈ A and 0 otherwise. For the hook-end effector
used in this work, we defined the grasp zone G as the region along the opening of the hook. This
reward is only active when the end-effector point e is close enough to the handle (within 1 m).

• rplg (penalize lost grasp): Give a binary penalty when if the handle point h is in the grasp zone at
step t− 1 and leaves the grasp zone at t.

rplg =

{
−1G(ht−1)(1− 1G(ht)) ∥e− h∥2 ≤ 1

0 otherwise

Similar to rhg , rplg is only active when the end-effector is close enough to the handle.

• rod (open door to target angle): Rewards opening the door to the target opening angle θ̄

rod = 1− |θ − θ̂|
θ̂

where θ is the door hinge joint angle. This reward can also be used to train an opening only policy
that opens the door to θ̂. For training the opening and passing through policy θ̂ is set to 75°.
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• radp (move around the door panel): This reward is only applied for pull doors.
Given zones Z1 and Z2 defined relative to the door panel as shown in Fig 4, radp is computed
based on the locations of the base b and the end-effector e as

radp =


1 b ∈ Z1

2 b ∈ Z2

0 otherwise
+


1 e ∈ Z1

2 e ∈ Z2

0 otherwise

A.2 Passing Rewards

• rp (passing progress): Rewards the base velocity vB for moving along the unit progress vector p

rp = max

(
1,

p · vB

∥vB∥max

)
where ∥vB∥max is the the max allowable commanded velocity of the locomotion controller.

A.3 Shaping Rewards

The shaping reward rs is defined as

rs = 0.3rma + 0.5rpbt + rpsa + 0.1rpcl + 2rpc

Individual terms of rs are defined as:

• rma (minimize arm motion): Rewards minimizing the arm joint velocities and accelerations

rma =

6∑
i=1

exp(0.01q̇2i ) + exp(0.000001q̈2i )

where q̇i and q̈i are the joint velocity and acceleration for the ith arm joint respectively.

• rpbt (penalize base tilt): Penalizes large tilt of the robot base. The base tilt angle ψ can be com-
puted from the projected gravity vector expressed in the robot base frame gB and expressed in the
world frame gW as follows

ψ = arccos

(
gW · gB

∥gW∥∥gB∥

)
Then rpbt = −1 if ψ > ψ̄, where ψ̄ is a tilt threshold, and 0 otherwise. We set ψ̄ as 8°.

• rpsa (penalize stretched arm): Penalize the arm from reaching out too far to prevent singular arm
configurations.

rpsa = −clip

(
∥e− s∥ − (0.7− 0.1)

0.1
, 0, 1

)
where e and s are the locations of the end-effector and shoulder joint.

• rpcl (penalize command out of limits): As the arm PD target and locomotion commands are
clipped within certain bounds we penalize the policy for commands that exceed these bounds.

rpcl = −
9∑

i=1

clip

(
|ai| − āi
σi

, 0, 1

)
where ai, āi, and σi corresponding to the action, action limit, and penalty ramp up speed for the
ith component of the policy’s output action. The action limits are discussed in Sec. 3.0.2.

• rpc (penalize collisions): Penalizes robot collisions.

rpc = −
∑
c∈C

({
1 ||λc|| > 0

0 otherwise

)
where λ(·) is the contact force on robot link (·) and C is the set of robot links where collisions are
penalized including the base, thighs, and arm.
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B Domain Randomization Parameters

Figure 11: The initial robot location relative to the door is determined at the beginning of each
episode by sampling dwall and dcenter.

The following randomizations are resampled for each new episode:

• Initial Base Location: Set relative to the doorway by the distances dwall and dcenter as shown in
Fig. 11. dwall and dcenter are sampled uniformly from [1, 2] m and [−2, 2] m respectively.

• Initial Base Yaw: We define a yaw of 0o as the robot facing forwards along the direction of the
doorway. The initial yaw is sampled uniformly from [−180, 180]o.

• Initial Base Velocity: The initial base velocity components vx and vy are sampled uniformly from
[−0.5, 0.5] m/s.

• Door Panel Mass: Sampled uniformly from [15, 75] kg.

• Door Hinge Resistance Torque: Sampled uniformly from [0, 30] Nm, set to 0 with probability 0.2.

• Door Handle Resistance Torque: Sampled uniformly from [0, 3] Nm, set to 0 with probability 0.2.

• Door Hinge Damping Torques: The hinge damping torque comprises of the air resistance given by
Kar

d θ̇2 and the door closer mechanism damping given by Kdc
d θ̇. We sample Kar

d uniformly from
[0, 4] Nms2 For most doors, the door closer’s damping is tuned to prevent the door from closing
too quickly. To model this, we setKdc

d to be some multiple α of the hinge resistance torque, where
α is sampled uniformly from [1.5, 3] s. The hinge damping torque is set to 0 with probability 0.4.

• Maximum Handle Turning Angle: Sampled uniformly from [15, 90]o.

• Arm Joint Proportional Gain: Sampled uniformly from [40, 60].

• Arm Joint Damping Gain: Sampled uniformly from [3, 6].

Figure 12: Randomized dimensions of the
door and handle.

We generated door models with different dimensions
that are loaded into the simulation during initialization.
The randomized door dimensions are shown in Fig. 12.

• dW : Sampled uniformly from [0.8, 1.0] m.

• dT : Sampled uniformly from [0.02, 0.06] m.

• hL: Sampled uniformly from [0.08, 0.12] m.

• hH : Sampled uniformly from [0.7, 1.3] m.

• hO: Sampled uniformly from [0.03, 0.12] m.
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C Additional Experiments

C.1 Is Teacher-Student Training Necessary?

To evaluate the necessity of the teacher-student framework for this task we trained two modified
teacher policies to see if a policy trained with RL directly on the observations available on the robot
can learn the task. The first is given only the student observations without access to the privileged
observations. The second is the same as the first except that noise is added to the observations at the
same amount used for training the student. We evaluated the teacher policies in simulation on 4000
environments (a different randomized door in each) for 10 episodes, each lasting 10 seconds, with
all domain randomizations active. The success rates are reported in Fig.13.
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Figure 13: Comparing the nominal teacher policy against variants with only the student observations.
The performance is reported as success rates on whether the policy could open the door enough and
if it could pass through the door. We consider the policy to have opened the door enough if the door
was opened by at least 30◦ within an episode. The policy is considered to have passed through the
door if the robot reaches a position 0.5 meters behind the door wall.

We find that without the privileged observations, the teacher policy could not learn to pass-through
for both opening directions, but is surprisingly able to learn an opening behavior that can sometimes
open both push and pull doors, albeit at a significantly worse success rate. Examining this behavior
qualitatively suggests that without the door type privileged information, the policy learns to associate
specific robot configurations with either push or pull, learning to move between these configurations
until the door opens. Adding noise to the observations further reduces the success rate for this type
of behavior as disambiguating these specific robot configurations becomes more difficult.
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C.2 Evaluating the Student Policy’s Capabilities

The capability of the student policy is evaluated in simulation by tasking it with traversing through
doors of increasing hinge resistance torques. Increasing the hinge resistance makes the doors more
difficult to open as the robot must apply more force before the door moves, and more difficult to pass
through as the door closes faster after opening. The student policy is tested on whether it could open
the door and if it could successfully pass through in episodes lasting 10 seconds with all domain
randomizations active. We report these results in Fig.14.
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Figure 14: Evaluating the capability of the student policy on doors of increasing hinge resistance
torques. The performance is reported as success rates on whether the policy could open the door
enough and if it could pass through the door. We consider the policy to have opened the door enough
if the door was opened by at least 30◦ within an episode. The policy is considered to have passed
through the door if the robot reaches a position 0.5 meters behind the door wall. During training,
the policy did not experience hinge resistance torques greater than 30 Nm (highlighted in red).

The teacher and student policies were trained with a hinge resistance randomization range of 0 Nm
to 30 Nm. As expected, the success rates for both opening and passing through the door decreases
for increasing hinge resistance. For the doors with greater hinge resistances, the policy could still
sometimes open them but passing through is more difficult with the success rate dropping to near
zero for hinge resistances greater than 50 Nm. For push doors, the higher resistance makes the door
panel more difficult for the robot to hold open and the robot can also get trapped in the door way by
the door panel. For pull doors, the higher resistance causes the door to close faster, making it more
difficult for the policy to move the robot around the door panel in time to pass through.
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