
Evaluating Visual Odometry & SLAM Initialization Methods for Arbitrary
Multi-Camera Rigs

Mikhail Terekhov1

mterekhov@student.ethz.ch

Mike Zhang1

shaozhang@student.ethz.ch

Jiaqi Chen1

jiaqchen@student.ethz.ch

Shane Kelly1

skelly@student.ethz.ch

Abstract

Multi-camera visual SLAM systems are becoming in-
creasingly relevant and generalized relative pose solvers
have been developed to initialize them. However, in prac-
tice, heuristics-based methods are almost always used.
This work investigates this discrepancy by evaluating sev-
eral initialization methods. Namely, ORB-SLAM3 (stereo
SLAM system), MultiCol (multi-camera adaptation of ORB-
SLAM), and generalized camera solvers. Our main con-
tribution in this paper is a benchmarking framework that
is used to evaluate the multi-camera initialization schemes.
We compare these methods in different environmental con-
ditions and parameters. We extract several insights includ-
ing common failure modes, and identify the current best
methods for multi-camera initialization. Lastly, we present
possible future work that would be needed to bring these
theoretical methods to practical applications.

1. Introduction
Visual odometry (VO) and simultaneous localization and

mapping (SLAM) have become increasingly used in indus-
trial applications such as mobile robots. The demand for
improved performance and robustness has necessitated the
use of multiple cameras in these systems. Several recent
works in multi-camera SLAM systems have been developed
[20, 3, 10]. All VO/SLAM approaches need a separate pro-
cedure to initialize the map and initial camera pose. We ar-
gue that current systems could benefit from a generic multi-
camera initialization scheme without any constraints on the
camera system. Existing VO/SLAM approaches are either
restricted to including a stereo pair [10] or use heuristic ap-
proaches that often lead to poor initializations [20].

There are theoretical developments that are supposed to
solve this issue, but they are not employed in real systems.
Thus, before creating a generic multi-camera initialization
pipeline, we need to evaluate the available theoretical and
practical approaches. This would reveal insights that allow
us to address the problems in existing initialization meth-
ods.
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2. Related Work
For monocular SLAM, there is a principled approach to

system initialization: run RANSAC with a minimal solver,
such as [14] and use the epipolar geometry constraint to ini-
tialize a map of 3D points for SLAM tracking. This ap-
proach can be naturally extended to a multi-camera scenario
with a generalized solver. Such a solver estimates the rela-
tive pose of a generalized camera [15], a formulation where
the unprojected camera rays do not share a common starting
point. As with the monocular case, a generalized epipolar
constraint [15] applies to multi-camera rigs treated as a sin-
gle generalized camera. Based on this idea, many general-
ized solvers have been recently developed. In this work, we
consider the Linear 17-Point solver [9], Generalized Eigen-
solver (GE) [8] and a minimal 6-Point solver [19]. To lever-
age these algorithms, we use the implementations from the
OpenGV library [7].

However, these solvers are rarely used in practice. Some-
times a heuristic method based on monocular initialization
is implemented [20], and sometimes visual odometry is
limited to multi-camera systems that contain a stereo-pair
[10]. Stereo SLAM, such as ORB-SLAM3 [2] is known to
achieve much better performance than its monocular coun-
terpart because of the availability of depths for each frame,
but it cannot be used for any arbitrary multi-camera setup.
A state-of-the-art system SVO [3] does employ a principled
approach using the 17-point algorithm, but we were not able
to make it run in practice. This work investigates why this
gap between theory and practice exists.

3. Contributions
Our contributions are the following:

• Evaluated initialization of two real SLAM systems
(ORB-SLAM3 and MultiCol SLAM) on two datasets

• Evaluated initialization using generalized camera
solvers on three datasets

• Investigated the failure modes of each method.

• Attempted a fair comparison between all methods.

• Proposed improvement to the existing methods given
our experiments.

1



4. Methodology
4.1. Datasets

EuRoC. For isolated evaluation of stereo initializa-
tion, we use the EuRoC [1] datasets, which provide syn-
chronized stereo image pairs from an MAV under a wide
range of aggressive maneuvers. Specifically, we focus on
the V103 dataset, which is one of four EuRoC datasets la-
beled with the highest difficulty rating (large amounts of
motion blur and extreme lighting changes), to allow for
more investigation of typical stereo initialization failure
modes.

Oxford RobotCar. The Robotcar datasets include
a forward stereo pair, three surround view cameras
[12], and have recently been equipped with RTK glob-
ally optimized ground truth poses [?]. We evalu-
ate all initialization methods using Oxford RobotCar,
namely three different segments to account for differ-
ent environments: 2015-10-30-11-56-36 overcast
conditions, 2014-12-16-18-44-24 nighttime, and
2015-02-17-14-42-12 direct sunlight.

Extension of Multi-FoV. We also use an extension of
the synthetic Multi-FoV dataset [21]. Originally, the dataset
was created for one wide-angle camera, but the authors gen-
erously provided the Blender scene as well as the patch for
enabling wide-angle cameras. This allowed us to extend the
set up to four cameras to achieve a nearly 360 degree FOV.
We call the resulting dataset MultiCam. It was used to eval-
uate all methods except ORB-SLAM3.

Autovision Samples. The last dataset that we consid-
ered was samples of data from the AutoVision project [4].
We received five short driving sequences, each with images
from five cameras. We were given the intrinsic calibrations
parameters for the Unified Camera Model [13]. This dataset
was used to evaluate the generalized solver methods.

4.2. Heuristic-Based Multi-Camera Initialization
MultiCol SLAM [20] is a generic multi-camera SLAM

pipeline that uses a heuristic method for initialization. It
first tries to estimate the motion of each camera indepen-
dently via RANSAC and the 5-point minimal solver [18].
The camera with the most inliers is then selected. After-
wards, the points from the selected camera are reprojected
onto the other cameras to get a scale estimate and observa-
tions from other cameras. To evaluate the quality of this ap-
proach, we run the whole system on a chunk of 50 frames
until it initializes. We let it process 20 additional frames
(still within the chunk) to see if it can recover from a bad
initialization and continue tracking.

4.3. Stereo Initialization
Unlike arbitrary multi-camera rigs, stereo camera rigs

are guaranteed to have significant FOV overlap that allows
for direct scale initialization of map points via triangulation
without any camera motion, often on the first observation.
However, the relatively limited FOVs of some stereo cam-
eras, compared to multi-camera rigs that can have nearly

360 degree FOVs, limits the observability of available vi-
sual texture and may lead to delayed or poor initializations.

We include ORB-SLAM3 [2], a state-of-the-art visual
SLAM system, in our evaluation to serve as a reliable
performance baseline and to gain insights from scenarios
where stereo initialization succeeds while multi-camera ini-
tialization methods fail, and vice-versa.

4.4. Generalized Camera Initialization
To the best of our knowledge, the only state-of-the-art

method that uses a generalized solver for multi-camera ini-
tialization is SVO [3]. However, we were not able to run
SVO on multi-camera data as we only had access to com-
piled binaries which had issues in our environments.

We implement our own pipeline for evaluating general-
ized camera initialization using the solvers from OpenGV
[7]. It only operates on pairs of frame bundles at two differ-
ent timestamps. Correspondences are found using feature
detectors (SIFT [11] and ORB [16]) from the OpenCV li-
brary [5]. The matches are refined using the cross match
and ratio tests [11]. Matches were only found in individ-
ual cameras. We did not implement finding cross camera
matches due to time constraints. The solver uses the corre-
spondences to estimate the relative pose between the frame
bundles which is then used to triangulate the 3D map.

OpenGV solvers require the correspondences as bearings
pointing into the scene, which we obtain by back-projecting
the matched keypoints. We implemented the Scaramuzza
Camera Model [17] which accurately approximates pro-
jection for wide-angle cameras. For AutoVision, we use
the Unified Camera Model [13] of the provided calibration
since conversion to the Scaramuzza Model is non-trivial.

The generalized solvers from OpenGV are used in-
side of RANSAC as minimal solvers. We used the
MultiAdapter data handling from OpenGV to evenly
sample correspondences from each camera, which was crit-
ical. We used RANSAC with adaptive termination which
was ran three times for an averaged estimate.

Our pipeline was evaluated on the MultiCam, Oxford
RobotCar, and AutoVision dataset. We did not evaluate on
EuRoC as the camera rig only has two cameras, which falls
into a degenerate case for some of the generalized solvers.

5. Results
5.1. Stereo Initialization

The ORB-SLAM3 stereo initialization was evaluated
on the difficult EuRoC V103 dataset, split into 20-frame
chunks. We processed each chunk 20 times to capture a
distribution of initialization results. Despite the difficulty,
most estimates align well with the ground-truth.

Initialization is defined as successful if the maximum
rotation error and the maximum translation error are both
within thresholds. We set the success thresholds to 10 de-
grees of rotation error and 0.25 meters of translation error.
Figure 1 shows that the ORB-SLAM3 initialization is quite
robust, achieving a 100% success rate for every chunk ex-
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Figure 1: ORB-SLAM3 initialization results on the EuRoC
V103 dataset split into 20 frame chunks. Each chunk was
processed 20 times and distributions of initialization suc-
cess is shown.

cept for three.
The failure modes of the ORB-SLAM3 stereo initializa-

tion were determined by inspecting the system during each
of the three chunks with failures. In all three chunks there
is a combination of fast motion and sudden change in image
exposure. Figure 2 shows a visualization of the front-end of
the system during the chunk with the most failed initializa-
tions. The under-exposed images led to sparse texture and
few tracked features.

Figure 2: A visualization of the front-end of the ORB-
SLAM3 system during initialization in a common failure
mode which all failed chunks in this dataset have in com-
mon: a combination of fast motion and extreme lighting
conditions.

5.2. Heuristics-Based Multi-Camera Initialization
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Figure 3: MultiCol initialization results on the modified
Multi-FoV dataset split into 60 chunks. Each chunk was
processed 20 times and the distributions of initialization
success are shown.

We have evaluated MultiCol SLAM initialization on two
datasets: modified Multi-FoV and Oxford RobotCar. Most
of the results are provided in the general comparison later.

To analyze the performance in more detail, we have created
plots like Figure 3. These plots reveal interesting failure
modes for the heuristics-based initialization approach, like
the one around segment #20 on the plot.

Main reasons for failures of the heuristic initialization
were found to be:

1. The chunk has no motion in it.

2. Surrounding region has poor/repetitive visual texture.

3. Only a few points are successfully reprojected from the
leading camera onto the rest.

While the first two reasons can be considered more or less
fundamental, the third could be avoided by a principled ini-
tialization approach.

5.3. Generalized Camera Initialization
Our generalized camera solver pipeline was evaluated by

running on frame pairs. Note that we do not consider frame
pairs that are static, as they cannot triangulate the 3D map
and would therefore fail to initialize for tracking regardless
of the accuracy of the relative pose estimate.

We evaluate the initialization on the estimated relative
pose as ground truth 3D maps are sparse or unavailable. We
define the following metrics: The translation direction error
(TDE) is defined as the cosine distance between the estimate
and actual translations. The rotation error (RE) is the angu-
lar magnitude of the error rotation matrix R̃ = RT

GT R̂. The
normalized translation error is defined as ||tGT−t̂||/||tGT ||.
When it is low, both the direction and scale are well esti-
mated. It is large when the scale is poorly estimate regard-
less of the accuracy of the translation direction. Note that
for very underestimated scale, it approaches 1, while for
very over estimated scale, it approaches infinity.

5.3.1 AutoVision Dataset

The distribution of metrics with varying distance and ro-
tation between frames is shown in Figure 4 for evaluated
frame pairs from Autovision. For most frame pairs, the es-
timated rotation and direction of translation are reasonable,
except when the rotation between frames is large, causing
poor correspondence matching. The translation direction is
estimated poorly for very small motions. This is likely due
to the ground truth translation being too small.

More interesting is the NTE. It is only small when the
motion has some, but not too much rotation, as seen in Fig-
ure 4 at the top-right. Moreover, looking at the top-left of
Figure 4, there is a clear separation in the NTE when the
scale can and cannot be estimated. When there is no ro-
tational motion, the direction of motion may be well esti-
mated, but not the scale.

5.3.2 MultiCam Dataset

A trend similar to that of the AutoVision dataset is observed
for both the NTE and RE in Figure 6. However, compared
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Figure 4: Relative pose estimate metrics for frame pairs of the AutoVision dataset using 17-Point solver and SIFT.
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Figure 5: NTE and RE for frame pairs from overcast Ox-
ford RobotCar sequence using 17-Point solver and SIFT.
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Figure 6: NTE and RE for frame pairs of the MultiCam
dataset using 17-Point solver and SIFT.

to on the AutoVision dataset, the pipeline here poorly esti-
mates the translation. Even though MultiCam is a synthetic,
the distortion is more significant than AutoVision.

5.3.3 Oxford RobotCar Dataset

The pipeline was run over the three selected sequences of
Oxford RobotCar. We show the results on the overcast se-
quence in Figure 5. Again, for brevity, we only show the
NTE and RE. A similar trend in the NTE is also seen here,
reinforcing the observation that the scale cannot be esti-
mated when the motion is purely translational. The pipeline
performed worse compared to Autovision we believe be-
cause of the fast motions and poor calibrations in RobotCar.

5.3.4 Generalized Solver Comparison

We compared the Linear 17-Point, 6-Point, and GE solvers
on their run times and initialization quality. We track a run-
ning average of the time it takes to complete a solve with
RANSAC. The timing results are shown in Table 1. The
6-Point Solver is extremely slow in comparison. It returns
64 possible rotations, and each needs to be checked by es-
timating the translation and triangulating the inliers. For all
solvers, the mean solve times were greater than 1 second
which would render them impractical for real-time use.

Table 2 compares the solver performance using the aver-
aged metrics over the MultiCam and RobotCar dataset. Re-
sults were not included for the 6-Point solver on RobotCar
as it takes too long. GE in general performs better than 17-
Point, and is able to estimate the scale of the translation for
a larger range of rotations between frames (results omitted
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17-Point 6-Point GE
RANSAC sample size 17 6 8
Mean solve time [s] 1.22 44.91 1.57

Table 1: Mean solve times over the MCAM dataset.

MultiCam RobotCar
Metric 17-pt 6-pt GE 17-pt GE
NTE 0.72 8e5 0.60 0.95 1.79
RE [DEG] 6.34 41.90 9.44 27.34 13.20
TDE [DEG] 0.86 0.59 0.32 4.41 2.66

Table 2: Averages of the metrics with 17-Point solver and
GE on the MultiCam and Oxford RobotCar datasets.

Initialization Overcast Direct Sunlight Night
ORB-SLAM 91.9 90.5 85.4
MultiCol 56.3 43.1 32.0
SIFT + 17pt 23.6 18.9 15.0
SIFT + GE 27.9 21.1 18.6

Table 3: Rate of successful initializations for different
methods with respect to environment conditions on three
Oxford RobotCar sequences. (static sequences removed)

for brevity). Note that the 17-Point solver tends to under-
estimate while GE sometimes drastically overestimates the
scale, causing a higher average NTE with GE on the Robot-
Car datatset.

5.4. Overall Method Robustness Comparison
Table 3 compares the rate of successful initializations

over different Oxford RobotCar sequences. For the ex-
isting SLAM methods (MultiCol and ORB-SLAM3), we
calculated the percentage of chunks on which all transla-
tional errors were below Tmin = 2m/s and all rotational
errors were below Rmin = 10 ◦/s. For generalized solver
based methods, we only required 20% of pose estimates to
be within the same thresholds to simulate best frame selec-
tion that would happen within a real SLAM pipeline. The
thresholds were selected rather loosely, because we expect
later bundle adjustment to correct small misalignments, and
it is just important that the estimate is not grossly wrong.

We see that the success rate decreases significantly when
it is sunny or night time, resulting in fewer matched corre-
spondences due to over or under exposure. Moreover, the
higher exposure at night causes motion blur which also re-
duces correspondence accuracy for faster motions.

A qualitative comparison for all initialization methods
sequences on the Oxford RobotCar overcast sequence was
performed. We have observed that ORB-SLAM3 initial-
izes successfully on almost all sequences. MultiCol initial-
ization succeeds consistently for over 50% of the cases re-
gardless of the amount of translation or rotation, while gen-
eralized solver methods fail for all large rotations on this
dataset.

6. Discussion
Our work confirms that stereo initialization performs

better then general multi-camera approaches. Among the
other methods, MultiCol initialization outperforms the gen-
eralized solver methods, but it uses SLAM bundle adjust-
ment to improve its robustness. Still, we can observe a fail-
ure mode when MultiCol initializes with only a few points
on all cameras except one. This could be avoided by using
a principled initialization approach.

C 1 C 2

P1 P2

P’1 P’2C’1 C’2

C’’1 C’’2

Figure 7: Theoretical justification for poor scale estimation
with purely translational motion and no cross-camera corre-
spondences: If we have a two-camera rig C1C2 and observe
two points, P1 and P2, then motions to C ′1C

′
2 or to C ′′1C

′′
2

will both have the same consistent bearing vectors, because
the triangles C1C

′
1P
′
1 ∼ C1C

′′
1P1 and C2C

′
2P
′
2 ∼ C2C

′′
2P2

are similar with the same scaling factor. This holds for an
arbitrary number of cameras and points.

6.1. Generalized Camera Initialization
Among OpenGV-based methods, the Generalized Eigen-

solver performed the best. All solvers exhibited similar be-
havior to the trend observed in Figure 4. The estimated
direction of translation is wrong only for large rotations.
There are two modes on the normalized translation error
plots: scale is either estimated correctly or not. Incorrect
scale estimation almost always happens for purely transla-
tional motion. Both translation and rotation estimates be-
come worse for larger rotations and translations. On the
normalized translation vs rotation between frames plot (top
right, Figure 4), we observe a narrow region of rotations,
around [10◦, 25◦], where the translation direction and scale
can be reliably estimated. This inability to recover scale
from purely translational motion is actually inherent to all
multi-camera solvers that do not exploit cross-camera cor-
respondences and is theoretically justified in Figure 7.

In addition to the case of pure translation, we also
observed that the 17-Point and 6-Point solvers fail when
there are only correspondences from two or fewer cameras
when tested in purely synthetic OpenGV experiments. This
matches the analytical results in [9, 6], where the 17-Point
solver is shown to be degenerate for two or fewer rigidly
connected central projection cameras. This may account for
the reduced performance of the generalized camera initial-
ization in the sunny and night sequences of Oxford Robot-
Car where over or under exposure of any one of the three
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cameras can push the system into these degenerate cases.
The GE solver was not observed to have this degeneracy.

Lastly, we observed that the frame-to-frame correspon-
dences must satisfy the following necessary conditions to
estimate the relative pose well. First, the correspondences
must be sampled evenly across all cameras. Unbiased sam-
pling can result in all correspondences being from two or
fewer of the cameras, falling into the degenerate case. Sec-
ond, the presence of matched correspondences with high
frame-to-frame disparity are necessary for the translation
estimate as low disparity points are effectively infinitely
far away and only serve to constrain the rotation. How-
ever, high disparity correspondences are more difficult to
match between frames, especially for wide-angle cameras
with strong distortions or when there are large motions. A
frame from Oxford RobotCar is shown in Figure 8 com-
paring the matched correspondences from SIFT and ORB.
SIFT is able to match high disparity correspondences on the
ground which ORB could not and is likely why we observed
that with ORB the pipeline was almost never able to reason-
ably estimate translation with the correct scale. Especially
for datasets with large distortions, ORB will often not match
enough correspondences for the minimal RANSAC sam-
ple. For example, in the overcast RobotCar sequence, ORB
failed to provided enough correspondences to RANSAC
with the 17-Point solver for 56.6% of the evaluated frame
pairs, whereas SIFT fails on only 4.7%.

Figure 8: Correspondences with SIFT (left) and ORB
(right) on a frame from the Oxford RobotCar dataset.

7. Proposals for Future Work and Conclusion
Given our experiments, we provide insights into improv-

ing generalized solvers. First, we need faster solvers. One
idea could be enabling batch-processing in RANSAC. Cur-
rent minimal solvers deal with small matrix computations,
but we may be able to speed up the computation if we feed
several hypotheses into the solver simultaneously and apply
SIMD vectorization to process them all.

The scale of translation is also impossible to estimate
without cross-camera correspondences, in the case of purely
translational motion. It was also found that RANSAC could
find a solution that only satisfies one camera’s correspon-
dences, making scale estimation hard. As such, we need
a RANSAC sampling strategy that balances the correspon-
dences between different cameras.

Feature matching is also shown to have a great effect
on the quality of the result. To reliably estimate motion,
we need matches with high disparity and, even better, on
different cameras. This poses a problem with ORB and
similar methods if they are not correctly tuned, especially
in wide-angle cameras. Therefore, wide-angle camera fea-
tures are also an important research direction for multi-
camera SLAM initialization.

8. Conclusion
With our benchmarking, we conclude that stereo initial-

ization is still the best method by a large margin. If it is not
available, then GE solver with balanced RANSAC sampling
is today’s most prominent theoretical approach. However,
for strict real-time requirements, one may need to fall back
to heuristics. We also propose several research directions
which could help theoretically grounded generalized cam-
era based approaches become applicable in practice.
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