
On the Origins of 
Robot Morphologies

OUR CONTRIBUTION: EVOLUTION ITSELF  AS AN MDP

CURRENT RESULTS
● Implemented individual mutations based on TAME codebase
● Completed the evolutionary environment with TAME- and NGE-based fitnes
● Discovered TAME model unsuitablity
● Implemented the first version of Deep Q-Learning
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NEXT STEPS AND FUTURE WORK
Alternative Methods for Fitness Evaluation
Investigate methods for approximating the optimal controller for a morphology 
without a time consuming inner optimization. For example, a model predictive 
control approach used in the morphology optimization of Zhao et.al [3].
Asynchronous Reinforcement Learning
Due to the long time it takes to take a single step of the evolutionary training 
environment we want to improve training time by implementing parallel RL 
algorithms such as Asynchronous Q-Learning or A3C.
Batch Reinforcement Learning
Another approach to scaling up RL training would to massively parallelize the 
roll-out data collection and train an agent using offline/batch RL methods. 

MOTIVATION: ROBOT MORPHOLOGY OPTIMIZATION
A robot is composed of both its physical design (morphology) and a controller. The 
morphology is generally first designed by humans and a controller is designed later.

Ideally, a joint design and optimization of the morphology and controller would result in better 
performance. This idea leads to the field of evolutionary robotics. The field is inspired by its 
namesake process whereby embodied organisms change both in physical morphology and 
neurological control over generations in response to their environment. Evolutionary Search 
(ES) is commonly employed as an outer optimization searching over morphologies by applying 
random mutations, while an inner optimization computes a controller for each morphology. 

Existing work in ES for morphology optimization have used data-driven methods to impart an 
“intuition” to the search process [3]. We investigate if this can be taken further by having the 
evolutionary search process be entirely data-driven, using deep reinforcement learning.

Example of robot morphology optimization using evolutionary search. Figure credit [1]
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In contrast to the use of RL only for finding  a control policy for a given morphology, we frame a 
sequential application of mutations (evolution) as a Markov Decision Process:

● State Space: morphology and (optionally) its motion policy
● Action Space: a pre-selected set of mutations
● Transition Rules: mutation applied to the morphology, (optional) re-trained policy
● Reward: Change in the morphology’s fitness

Expected benefits
● More efficient application of mutations compared to random search
● Consideration of the long-term effect of a mutation (i.e. a mutation now may allow a very 

useful mutation in the future)

ENGINEERING CHALLENGES
Our novel approach presents unique challenges and a lack of established results in literature

Efficient Morphology Fitness Evaluation
Computing the True Reward is Intractable. The true fitness of a morphology in a task 
environment can only be determined by computing the optimal controller. This is intractable 
and we must resort to heuristic methods and estimate a lower bound on the true fitness.

We implement two methods to approximately evaluate the fitness:
1. Based on Neural Graph Evolution [1], which computes a controller using RL. The use of 

GNNs allows for parent-to-child control policy inheritance.
2. Based on Task-Agnostic Morphology Evolution [2], which formulates an alternative 

task-agnostic notion of fitness based on morphology’s predictability and capacity to 
reach distant states.

Stochasticity of the Reward. Both methods of approximating the  fitness are stochastic: 
the same morphology may achieve different fitness under the same evaluation method. This 
presents another significant challenge for implementing RL: the randomness of state 
transition is embodied in the randomness of the reward.

Variability of the Action Space. A common assumption in Deep RL is that the action 
space remains constant throughout the trajectory. In this work, possible actions/mutations 
that can be applied to a morphology depend on the number of nodes/limbs of the 
morphology. Over an evolutionary rollout, nodes can be added or removed.

Action Variance. The mutations must be specified with enough precision to reduce the 
variance associated with each action. However, too precise actions may result in too many 
actions and difficulty in exploration during training.
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METHODOLOGY

Evolutionary Gym:  Implement training environment modelled on OpenAI Gym interface

mutated morphology, change in fitness
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Evolutionary RL Agent: 
Implementing algorithms to 
aid mutation selection with RL

Action/Mutation Space: Define a mutation space amenable to neural network regression
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Experiment design: bad walker. Evolutionary agent needs to remove the obstructing limb and move 
functional limbs to the ends of the robot. So far the fitness of a morphology is pre-defined, not 

estimated with TAME or NGE.

Q-Function Estimator Loss Average Episode Reward


