
On the Origins of Robot Morphologies

Mike Zhang
shao.zhang@student.ethz.ch

Mikhail Terekhov
mterekhov@student.ethz.ch

Abstract

The problem of automatic robot morphology design is commonly handled by evo-
lutionary search. We propose a novel approach by formulating this evolutionary
search as a Markov Decision Process and using Reinforcement Learning for effi-
cient search through the combinatorial space of robot morphologies. To this end,
we implement an evolutionary training environment and Double-DQN and A3C
agents for this environment. We find that the evolutionary environment is unlike
most common benchmark environments due to the difficulty of accurately evaluat-
ing a morphology’s fitness. However, we show that for hand-crafted morphology
spaces, our trained agents are able to find good performing morphologies.

1 Introduction

A robot is composed of both its physical design (morphology) and a controller. The morphology
is generally first designed by humans and a controller is designed later. Ideally, a joint design and
optimization of the morphology and controller would result in better performance, leading to the field
of evolutionary robotics [1, 2, 3, 4], inspired by its namesake process whereby embodied organisms
change both in physical morphology and neurological control over generations. In the context of
evolutionary robotics, reinforcement learning is used to train a controller for evaluating a morphol-
ogy’s performance, also known as its fitness. Learning the control policy is analogous to animals
learning during their lifetime, while the morphology optimization is analogous to the evolutionary
process changing a species over generations. The major issue that any work in evolutionary robotics
must address is the combinatorial nature of the morphological design space. There is no gradient for
a change in morphology such as “adding a limb to the robot”. To work around this, combinatorial
optimization methods such as evolutionary search with random mutations are commonly employed
to search through the space of morphologies.

In this project, we take a different approach. The incremental nature of applying mutations to a given
morphology allows us to frame evolution itself as a Markov Decision Process (MDP). Morphologies
become states, mutations become actions, and the change in performance after a mutation is the
reward. Note, that existing reinforcement learning algorithms are well-suited for discrete action
spaces, such as the Atari games controller [5], meaning our approach is compatible with non-
differentiable changes in morphology. Seeing evolution as an MDP allows us to train an evolutionary
agent to determine useful mutations to apply as opposed to applying random mutations as it is done
in existing morphology optimization methods. Moreover, an MDP point-of-view naturally allows the
evolutionary agent to consider the long-term effects of mutations in the genealogy, and not only just
immediate improvements in performance. An example evolutionary trajectory that can be produced
by such an MDP is presented in fig. 1.

The specific contributions of our work are:

• Implementation of a ’Gym’-like training environment for evolution formulated as a MDP.

• Study and propose solutions to the issue of tractable approximate fitness evaluation.

Foundations of Reinforcement Learning HS2021, Department of Computer Science, ETH Zürich.



Figure 1: An example trajectory of the evolution MDP. At each step a single mutation is applied
(from left to right): change of the length of a limb, addition of a limb, removal of a limb.

• Demonstrate that RL agents trained in this evolutionary environment are capable of learn-
ing how to change a robot morphology to achieve better performance on a desired task,
empirically justifying our evolutionary MDP formulation.

2 Related Work

Most recent works in robot morphology optimization [2, 3, 4, 6] are based on evolutionary search.
A smaller set of recent work [7, 8] perform joint morphology and control optimization using RL,
but these works can only handle parametric morphology changes, such as “change the length of
the limb”. In contrast to the aforementioned methods, Pan et al. [9] propose to handle parametric
and nonparametric changes using Bayesian Optimization. However, their method was specifically
proposed for hand morphology optimization for grasping tasks with a very limited morphology space.

To the best of our knowledge, our proposed method is the only that formulates morphological
evolution as an MDP. As such, there are no existing baselines for direct comparison. In the following,
we highlight recent works which are the most relevant to our method.

In Neural Graph Evolution (NGE) [2], control policies are parameterized by Graph Neural Networks
(GNN) which allows for the policy of the parent to be passed to its children, enabling policy
inheritance. The fitness of each morphology is determined using RL training. A learned heuristic
function is used to prune morphologies to speed up the search.

In Task-Agnostic Morphology Evolution (TAME) [3], the authors formulate an information-theoretic
fitness function to measure how would a morphology perform on a variety of tasks in a given
environment. Intuitively, this fitness measures if a morphology can predictably reach a wide variety
of states. The key advantage of TAME over NGE is that its fitness evaluation does not require any
time consuming RL training.

RoboGrammar [6] formulates a grammar by which robot morphologies are built up from. This
grammar imposes a structure on the morphology space which gives enough of a prior allowing the
authors to efficiently compute a model predictive controller for evaluating fitness. Graph search
augmented with a learned heuristic is employed for searching through the morphology space.

From NGE and TAME, we draw the representation of morphologies as trees/graphs and experiment
with both methods’ fitness functions. In contrast to NGE and RoboGrammar, instead of using learning
to augment search, we propose to learn the entirety of the search process.

3 Methodology

3.1 Evolutionary Training Environment

Taking inspiration from common RL benchmark interfaces such as the OpenAI Gym [10] and the
Deepmind Control Suite [11], we implement a “gym-like” training environment for our evolutionary
MDP which at every step applies a mutation selected from some policy and returns the mutated
morphology. The morphology is represented as a tree where the nodes are the limbs of the robot
connected by joints/edges. Nodes store information such as the length of the limb while edges store
information such as the type of actuation connecting two limbs.

Let mi ∈ M be the morphology from some morphology space M obtained after i-th mutation. Each
mutation is represented as ai : M → M, and deterministic state transitions are

mi+1 = P (mi, ai) = ai(mi). (1)

2



In this project, we use the following representation of mutations. Since morphologies are represented
as trees m = (V,E), we say that a fixed finite set of actions A can be applied to any node v ∈ V of
the morphology. Set A can include deletion of a node with all its subnodes, modification of some
attributes, such as the length of the edge to the parent, addition of another child, etc. Overall, each
morphology gets its own set of allowed actions Am. The set of all possible actions is thus

A =
⋃

m∈M
Am, A ⊂ MM. (2)

This tree representation allows for exploration of sufficiently rich morphology spaces, while main-
taining problem tractability. It is also nicely compatible with graph neural networks for learning.

We further introduce the notion of fitness fi = f(mi) ∈ R that corresponds to performance of the
morphology mi at a given task. After applying k mutations to an initial morphology m0, we will
obtain a final morphology mk. Our evolutionary RL framework tries to optimize the intermediate
mutations to maximize fk. We introduce the reward function

r(m, a) = f(a(m))− f(m) r : M×A → R. (3)

When using finite time horizon k and a discount factor γ = 1, this formulation leads to the desired
total reward:

R(a0, · · · ak−1) =

k−1∑
i=0

ri =

k−1∑
i=0

(fi+1 − fi) = fk − f0. (4)

With a fixed starting morphology m0, maximizing R is equivalent to maximizing fk. In practice, we
use γ < 1, introducing some bias to make the learning task easier. The Evolutionary MDP is then

M = (M,A, P, r,m0, γ) (5)

3.2 Fitness Evaluation

The best measure of fitness would be the performance of a morphology with its optimal controller
for a given task. However, finding an optimal controller is intractable. We thus have to rely on
heuristics. Our formulations of fitness are non-deterministic (fitness of a fixed morphology can vary
from evaluation to evaluation.) Non-deterministic fitness, together with high computational cost of its
evaluation are the main challenges in the project. We will now describe the fitness functions we use.

TAME fitness. We use the Task-Agnostic Objective for Fitness introduced in equation (1) in Hejna
et.al [3], which presents a detailed explanation of this fitness formulation. Note that the TAME fitness
evaluation it does not require any RL training. Instead, an action-predicting classifier qϕ(a | sT ,m)
is used. In the TAME morphology optimization algorithm, this classifier is trained repeatedly on the
growing genealogy of searched morphologies. We cannot do the same, since this would require to
progress with all evolutionary unrolls at the same time, in the manner of evolutionary search used in
TAME. This approach cannot be combined with RL training, which requires performing unrolls one
at a time, or in small batches. To work around this issue, we pre-train the action-predicting classifier
by running the TAME algorithm, and then use the final trained classifier for evaluating fitness in the
evolutionary MDP.

NGE fitness. A method of finding a lower bound on a morphology’s fitness is to use the performance
of the control policy trained by NGE as the fitness. The disadvantage of NGE fitness is that each
evaluation requires an RL training process. An inner RL loop is executed for each morphology. For
simple 2D walkers, training a reasonable policy (not necessarily the optimal policy) takes around
10′000 environment steps, and this corresponds to a minute of runtime on a single core. Because of
this we consider NGE’s feature of policy inheritance that allows us include the control policy a part
of the MDP’s state and training each single morphology for less steps. This will, however, introduce
bias in the reward signal: if a morphology occurs further in the evolutionary unroll, its policy will
have been trained for longer, and likely the fitness will be higher. Similarly, this can introduce delays
in the reward signal as a good morphology may be reached but is not reflected in the reward due to a
poor control policy. Despite this, we opt to use policy inheritance with NGE fitness or training the
evolutionary agents would not be feasible in a reasonable amount of time.

3



GNN

MLP

Q-Values

Mutation Log-Likelihood

Mutation Distribution Parameters

Node/Limb Feature

Node/Limb Embedding

or

or

Figure 2: Neural network architecture used for all RL agents. All node embeddings are passed
through the same MLP, outputting values corresponding to the allowable mutations for each node.

Pre-defined fitness. For early tests of our RL implementations, we designed “toy problems”,
where the reward is not associated with any kind of task performance. Instead, the reward for each
morphology is hand-crafted and deterministic. This allows for fast fitness evaluation and fast feedback
on the performance of our agents.

3.3 Applying Deep Reinforcement Learning

Because the morphology spaces can be extremely large, we apply Deep RL using neural networks to
parameterize our agents. For a given morphology, the agent decides which node of the morphology to
mutate, and what mutation from a set of allowable mutations will be applied. As the number of nodes
may change due to mutations, the dimension of the action space changes accordingly. This violates
the standard assumption of constant action space dimension in most implementations of Deep RL
algorithms, such as Stable Baselines [12] which therefore cannot be used in our work. Therefore, we
have implemented our own versions of some popular RL algorithms, using PyTorch and PyG1 for
Graph Neural Networks. Our open-source implementation for this work can be found at 2.

A graph neural network consisting of layers of graph convolutions [13] is used to compute contextual
node embeddings from the initial node features connected by the tree of the morphology. All node
embeddings are passed through the same multi-layer perception which gives the final outputs of the
network. Depending on the RL algorithm the final outputs could be estimated Q values, log-likelihood
of the actions, or parameters of a distribution for continuous actions. For morphology level outputs
such as value estimation, we use pooling to get a single output from the node level outputs. We
implemented two Deep RL algorithms for training the evolutionary agent.

Deep Q-learning. As a simple first algorithm, we implemented Deep Q Networks (DQN) following
Minh et.al [5] training with an annealed ϵ-greedy exploration policy. Moreover, we implemented
Double-DQN [14] as we suspect Q overestimation to be likely when using non-deterministic fitness
evaluation methods.

Asynchronous Advantage Actor Critic (A3C). The bottleneck for training is not in propagating
through the neural network, but rather in fitness evaluation and computing the reward at each step.
Thus, asynchronous methods are perfect for the task, allowing for several processes to carry out
unrolls in parallel and update a shared model. We implemented the A3C algorithm described in [15]
with Generalized Advantage Estimation (GAE) [16].

1https://pytorch-geometric.readthedocs.io/en/latest/
2https://gitlab.ethz.ch/darwin/morphology

4

https://pytorch-geometric.readthedocs.io/en/latest/
https://gitlab.ethz.ch/darwin/morphology


(a) The Bad Walker morphology space. The initial
morphology m0 is shown on the top left, and m∗, one
of the “interesting” morphologies, better suited for
forward motion, is on the top right.

(b) The Constructor morphology space. The initial
morphology m0 is shown on the top left, and the oth-
ers are examples of morphologies that can be obtained
within 8 mutations from m0.

Figure 3: Morphology spaces used in this project.

4 Results

4.1 Experiment Design

Two morphology spaces were designed to test the RL implementations. These spaces are small,
where we have a prior of what a good morphology should be to simplify the learning problem. For
each space, we have also constructed a pre-defined fitness function for early testing.

The first morphology space is the Bad Walker. Two examples of morphologies from this space,
including the initial morphology m0, are shown in fig. 3a. The initial morphology is not suited for
walking. When the middle foot is removed, however, the robot is able to move forward. With each
mutation, the evolutionary agent can either move one foot to one of four pre-defined locations on the
trunk (including both ends of the trunk, as shown in the right morphology m∗ on fig. 3a), or remove it.
Each mutation results in a no-op when applied to the root node. To construct the pre-defined fitness,
we encourage morphologies that are closer to m∗. To this end, we increase the fitness if the long foot
is removed and decrease it if one of the short feet is removed. Further, we add a certain value of the
fitness depending on how close the short feet are to the corresponding ends of the trunk.

The second morphology space is larger and called the Constructor. Some possible morphologies
from this space are presented in fig. 3b. We allow for static horizontal and dynamic vertical edges to
be added. Each dynamic vertical edge has a controllable joint, and are slightly inclined to facilitate
forward motion. There are 6 mutations that an agent can apply to each node: 4 correspond to adding
a horizontal edge (2 edge directions × 2 possible attachment points) and 2 correspond to adding
a vertical edge (corresponding to 2 attachment points). For this morphology space, we construct
a pre-defined fitness that does not actually correspond to any “reasonably walking” morphologies.
Instead, the fitness is defined such that optimal strategy is to always add vertical edges.

f(m) = 100× (number of vertical edges in m− number of horizontal edges in m). (6)

4.2 Experiments

Due to the novelty of our Evolutionary MDP approach, there are no existing benchmark environments
that exist in the literature and we must build this infrastructure to conduct experiments. Our imple-
mentation builds on top of the open-source code of TAME by Hejna et.al [3]. Conveniently, their
codebase also contains a baseline implementation of NGE which we use for NGE fitness evaluation.
The hyperparameters for all experiments are given in Appendix A.

Evaluating different fitness functions. Our work implements two fitness evaluation strategies
based on NGE and TAME. Both require evaluating the performance of the morphology within a
MuJoco [17] task environment. The task is 2D forward motion for NGE fitness, whereas TAME-based
fitness uses a task-agnostic 2D motion environment.

5



0 200 400 600 800 1000 1200
steps

200

0

200

400

600

800

re
wa

rd

A3C
Double-DQN

(a) Bad Walker morphology space

0 200 400 600 800 1000 1200
steps

600

400

200

0

200

400

600

800

re
wa

rd

A3C
Double-DQN

(b) Constructor morphology space

Figure 4: Experiments using pre-defined fitness. Plots of a single run are smoothed using median
filtering. Confidence intervals correspond to .25 and .75 quantiles in the moving window of rewards.

Figure 5: The optimal evolutionary trajectory found by the trained Double-DQN agent.

In NGE fitness, the control policy is trained for a fixed number of steps. We used either 3000 or
5000 steps in our experiments. Thus, using policy inheritance in the unroll, training a reasonably
performing controller takes 2-3 steps.

After implementing the TAME fitness evaluation, a major issue became apparent. During the TAME
morphology optimization algorithm, the action-prediction classifier qϕ is trained repeatedly on the
generated morphologies. Surprisingly, the control flow is such that the classifier is never validated
on morphologies that it has not seen before during training. Thus it overfits and fails to generalize
to unseen morphologies, making it useless for our task. Though an overfitted classifier can still be
useful in determining the “predictability” of actions as high variance actions are unlikely to be well
predicted by an overfitted classifer. This would help to explain the positive results of the TAME
algorithm presented in Hejna et.al [3]. As such, we omit presentation of experimental results using
the TAME fitness function.

Training on pre-defined fitness. All RL implementations were ran on both morphology spaces
using their respective pre-defined fitnesses. The results are shown in fig. 4. Since discrete morphology
spaces with pre-defined rewards result only in a small number of possible fitness values, median-
filtered plots only have several distinct levels. Surprisingly, Double-DQN is able to learn a reasonable
mutation policy for the Bad Walker but fails for the constructor, and vice versa for A3C.

We believe that the failure of A3C on bad walker can be explained by the dynamics of the actor-critic.
In this morphology, a significant share of actions return zero reward. If now the actor correctly
predicts it as zero, the resulting policy gradient estimator will also become zero. This will lead to a
critical point, from which gradient ascent cannot get out of.

Bad Walker with NGE fitness. We want the evolutionary agent to learn the optimal mutations such
that the Bad Walker can walk forwards. The results presented focus on Double-DQN as A3C failed in
this space likely for the same reason it failed with the pre-defined fitness. Two different sizes of the Q
network with hidden layer dimension 20 and 100 were tried. The resulting training curves are shown
in fig. 6. While, both networks were able to solve the task, the larger network was seen to make more
stable progress throughout training. Surprisingly, the optimal morphology discovered by the agent is
different and better than m∗, which we expected to be the optimal morphology. The difference being
that the legs are swapped, leading to a more stable motion! A roll-out of the trained Double-DQN
agent’s policy is presented in fig. 5, showing that the agent reaches the optimal morphology in the
shortest possible number of steps and then stays there by performing no-op mutations for the rest of
the rollout. We also provide a video of these morphologies in this roll-out trying to walk forward
using their RL trained controllers 3. From the video, it is clear that the reward is delayed even when

3https://youtu.be/BksKxVRwkpE

6

https://youtu.be/BksKxVRwkpE


the optimal morphology is reached due to the use of policy inheritance in the NGE fitness. Once the
optimal morphology is reached, it still takes two no-op mutations until the inherited control policy is
able to move forward at a reasonable speed.

0 500 1000 1500 2000 2500 3000 3500
steps

0

200

400

600

800

1000

re
wa

rd

Double-DQN small network
Double-DQN big network

Figure 6: Experiments Double-DQN agent in the Bad Walker morphology space with NGE fitness.
Plots of a single run are smoothed using median filtering. Confidence intervals correspond to .25 and
.75 quantiles in the moving window of rewards.

Constructor with NGE fitness. The Constructor morphology space is much larger, and therefore
takes longer for an agent to sufficiently explore. As A3C was parallelized over 20 cores, it was able to
learn a good policy from a large number of steps in a reasonable amount of time. We omit presenting
the results for Double-DQN which was not able to achieve any significant improvement of the reward
in a reasonable amount of time due to the lack of parallelization. The reward and entropy of the A3C
policy over training is presented in fig. 8. During an initial period until around 20′000 steps, the agent
stays in the exploration mode (entropy is high, close to maximal). After that, the entropy begins to
decrease and the agent is more exploitative, corresponding to an increase in reward. The policy found
by the A3C agent is presented in fig. 7. We provide a video of the morphologies in this roll-out trying
to walk forward using their RL trained controllers 4. The video shows that the agent can produce a
simple bipedal robot from a non-moving “stick” morphology. Because the agent adds several legs to
the same place, the morphology does not always move well, and the forward motion may be unstable.

Figure 7: An unroll in the Constructor space using the trained A3C agent. The chosen actions are
those with maximal probability from the learned policy. Note that in the Constructor space there is
no no-op mutation. Whenever a morphology seems to stay the same, a new leg is added to one of the
two places for legs.

5 Discussion and Future Work

This work has demonstrated that evolutionary search over morphology space can be formulated as an
MDP which can be be solved by the application of Deep RL algorithms. It must be acknowledged
that given the time constraints we were not able to investigate many aspects of the problem in further
details. Some clear examples being, does Double Q-learning help? How much does policy inheritance
effect training? Have we found the best hyperparameters? What about other RL algorithms (e.g.
Rainbow, PPO [18, 19])?.

4https://youtu.be/h6nEH1_pLbE

7

https://youtu.be/h6nEH1_pLbE


200

0

200

400

600

800

re
wa

rd

0 10000 20000 30000 40000 50000 60000
steps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

en
tro

py

Figure 8: Experiments with A3C agent in the Constructor morphology space with NGE fitness.

The limiting factor to large-scale experiments is the time-consuming fitness evaluation. This is one of
the factors that differentiate the evolutionary environment from most RL benchmark environments
which generally step quickly, use deterministic reward functions, and assume constant action spaces.
The evolutionary environment does not fit any of these descriptions and may be useful as a new
difficult benchmark to test RL algorithms. Despite this, RL algorithms designed and tested on standard
benchmark environments are shown to work for the evolutionary environment which exceeded our
initial expectations given the stochastic and possibly delayed reward signals. The caveat here was
that we evaluated the RL algorithms on our hand-crafted structured morphology spaces. The open
question still remains to be seen if for very large (or even unbounded) morphology spaces with large
action space, RL agents are able to learn to find useful morphologies.

We do not compare the performances of the morphologies found by our method against other
morphology optimization algorithms such as NGE or TAME. The standard benchmark for comparing
morphology optimization algorithms is to run them for a fixed number of generations and compare
the best morphology found in the respective genealogies and the total wall time for the searches .
However, our RL-based approach does not fit to this benchmark. As our method is purely data-driven,
it has a slow training process, but the trained policy can be executed quickly. This leaves the open
question of how applicable is our RL-based method as a morphology optimization technique?

For completeness we include a short discussion on failed experiments in Appendix B.

Given the discussion, we present multiple promising directions for future work.

More Extensive Experiments and Hyperparameter Search. The task remains to produce a more
extensive set of result by benchmarking a larger selection of Deep RL algorithms and extensive
hyperparameter search to disambiguate algorithmic failures from poor choices of hyperparameters.

Better Exploration. In this work, we employed the common ϵ-greedy exploration policy. Given
how expensive a single step in the evolutionary MDP is, more intelligent exploration methods which
take informed exploratory actions should be investigated.

Scaling Up. The question of interest is can our approach learn useful mutations for morphology
spaces much larger than those presented in this work? While we implemented asynchronous training
with A3C, we were still limited by the computing resources available. Another promising direction
may be to first massively parallelize collection of evolutionary roll-out data and then training an agent
on this data using offline/batch RL [20].

Handling Parametric/Continuous Morphological Changes. Our current implementation does
not handle continuous morphology changes. Continuous actions cannot be handled by DQN based
algorithms. This further motivates experiments with policy optimization algorithms which can handle
both discrete and continuous actions.

Imposing Additional Structure on the Morphology Space. A promising direction is to take
inspiration from RoboGrammar [6] by defining a grammar/ruleset by which morphologies are
constructed which explicitly enforces structure on the morphological space. This gives strong priors
for the function class of the optimal control input (e.g. periodic inputs for walking), allowing for good
initial guesses which can be refined by a model predictive controller much faster than RL training.

8



References
[1] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, pages 15–22, 1994.

[2] Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution: Towards
efficient automatic robot design. arXiv preprint arXiv:1906.05370, 2019.

[3] Donald J Hejna III, Pieter Abbeel, and Lerrel Pinto. Task-agnostic morphology evolution. arXiv
preprint arXiv:2102.13100, 2021.

[4] Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via
learning and evolution. arXiv preprint arXiv:2102.02202, 2021.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[6] Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spielberg, Daniela
Rus, and Wojciech Matusik. Robogrammar: graph grammar for terrain-optimized robot design.
ACM Transactions on Graphics (TOG), 39(6):1–16, 2020.

[7] Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew R Walter. Jointly learning
to construct and control agents using deep reinforcement learning. In 2019 International
Conference on Robotics and Automation (ICRA), pages 9798–9805. IEEE, 2019.

[8] Lucy Jackson, Celyn Walters, Steve Eckersley, Pete Senior, and Simon Hadfield. Orchid:
Optimisation of robotic control and hardware in design using reinforcement learning. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021). University
of Surrey.

[9] Xinlei Pan, Animesh Garg, Animashree Anandkumar, and Yuke Zhu. Emergent hand morphol-
ogy and control from optimizing robust grasps of diverse objects. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 7540–7547. IEEE, 2021.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[11] Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez,
Josh Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess. dm_control: Software and tasks
for continuous control, 2020.

[12] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable baselines3. GitHub repository, 2019.

[13] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4602–4609, 2019.

[14] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[15] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PMLR,
2016.

[16] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[17] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Thirty-second AAAI conference on artificial
intelligence, 2018.

9



[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[20] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[21] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In International Conference on Machine Learning, pages 449–458. PMLR,
2017.

[22] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

10



A Hyperparameters of the experiments

A.1 NGE Parameters

These are the parameters of the trained NGE control policies that were used for NGE-based fitness
evaluation. Apart from the number of training steps, these parameters were kept fixed throughout all
experiments.

Parameter Value
policy network arch [64, 64, 64]

inherit policy? True
unrolls for fitness evaluation 9

PPO parameters
number of epochs 8
number of steps 1000

entropy coefficient 0.001
learning rate 0.0003

batch size 128
Table 1: NGE hyperparameters

A.2 Double-DQN on bad walker

Parameter small Q network big Q network
Network architecture

graph encoder arch [20, 20] [100, 100]
MLP arch [20] [100]

ϵ-greedy exploration
starting ϵ 1.0

final ϵ 0.1
annealing strategy linear

number of annealing steps 20000
Replay Buffer

buffer size 10000
batch size 32

Other parameters
γ 0.99

Steps per episode 10
NGE training steps per morphology 3360

reward downscaling factor 100
steps before resetting the target net 150

optimizer Adam
learning rate 0.0003

loss smooth L1

Table 2: Hyperparameters of Q learning with NGE fitness on the bad walker space.

For the pre-defined bad walker fitness, we used the small Q network with the same parameters.

11



A.3 A3C on constructor

The parameters are presented in Table 3.

Parameter Value
Value/Policy network

graph encoder arch [64, 64, 64]
node embedding dimension 64

value MLP arch [128]
policy MLP arch [128]

global aggregation strategy mean
shared value and policy encoding True

Other parameters
number of processes 20

steps per episode 9
entropy coefficient 0.02

value loss coefficient 0.5
reward downscaling factor 100

γ 0.95
use GAE True
λ for GAE 0.95
optimizer Adam

learning rate 0.0003
Table 3: Hyperparameters of A3C with NGE fitness on the constructor space

B Brief Discussion of Failed Experiments

We implemented an asynchronous version of Deep Q Networks following [15] to speed up training
via parallelization. Unfortunately, we were not able to solve deadlocking issues which appeared to
occur when running the NGE fitness RL training within the separate worker cores.

For handling the non-deterministic fitness evaluation and resulting reward, we thought to apply work in
the area of distributional RL [21] which attempts to estimate the full distribution of returns as opposed
to just the expected return. The distributional RL formulation naturally handles stochastic reward
functions.We implemented Quantile-Regression Deep Q Networks (QR-DQN) [22], a distributional
RL algorithm in hopes of better handling the stochastic reward signal. However, we were unable to
obtain successful results with QR-DQN within the time constraints.

12


	Introduction
	Related Work
	Methodology
	Evolutionary Training Environment
	Fitness Evaluation
	Applying Deep Reinforcement Learning

	Results
	Experiment Design
	Experiments

	Discussion and Future Work
	Hyperparameters of the experiments
	NGE Parameters
	Double-DQN on bad walker
	A3C on constructor

	Brief Discussion of Failed Experiments

